

Water Cooled VSD Screw Chiller

MVSW Series

Nominal Capacity 264 to 1684 kW

Refrigerant: R134a

Contents

1
3
4
5
8
12
15

Features

STRUCTURE

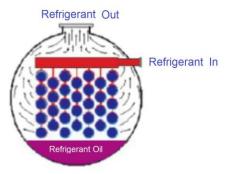
Multistack **MVS** series VSD screw chillers use high efficiency variable frequency screw compressors, falling film or flooded (optional) evaporators and cutting-edge MS One control system to achieve best energy efficiency ratio at both full load and part loads and reduce operating costs significantly. Multistack **MVSW** series Water Cooled VSD Screw Chiller play an important role in environmental protection and energy conservation.

Cooling capacity of each unit ranges from 264 kW to 1684 kW, which is ideal for applications in hotels, restaurants, movie theaters, shopping malls, office buildings, residential buildings, hospitals, etc. as well as industrial process refrigeration, such as plastic chemical and precision instrument industries.

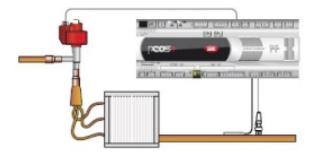
Electronic expansion valve (EXV) is used for metering the supply of liquid refrigerant for the falling film or flooded evaporator. The packaged unit has already been factory-charged with refrigerant and factory-tested, requiring only pipelines and power-lines connections while eliminating complicated pump-down and refrigerant charge during field installation to ensure reliable operation of the equipment.

Multistack's new generation of MS One programmable control system not only provides the most powerful protection and control over the chiller, but also enables remote monitoring with its powerful communication function. The chillers are designed to be compact, space saving and installation cost saving. Multistack **MVSW** series Water Cooled VSD screw chillers are of packaged design. Main parts include screw refrigeration compressor, variable speed drive (VSD) on compressor, shell and tube condenser, falling film evaporator (optional flooded evaporator), filter drier, EXV and control system. To make sure consistent ex-factory performance, chillers have been pumped down, charged with refrigerant and lubrication oil and run-tested in the factory. Field works only remain water pipes installation and power lines connection.

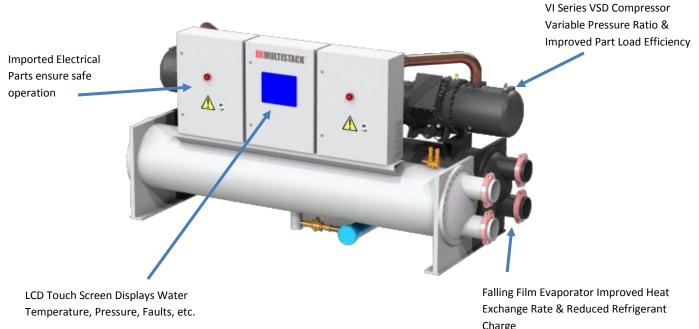
VI Series VSD COMPRESSOR


Semi-hermetic screw refrigeration compressor has a motor and screw rotor installed in the same housing. The screw rotor is directly driven by the motor without any mechanical driving device, thus avoiding efficiency loss and reducing vibration and noise. This structure and directly driven design eliminate the use of shaft seal and avoid associated refrigerant and oil leakage as well as shaft seal change due to wear and tear.

With excellent volumetric efficiency and minimum clearance, the 5~6 tooth profile wound-rotor design has been patented in the U.S.A., Japan and China. Pressure ratio is adjustable based on actual operating conditions and operation loss can be reduced to achieve better capacity control range and more accurate temperature control. Motor and discharge temperature safeties, oil level control, oil heater, oil cooling and anti-slugging functions ensure reliable and stable operation of the compressor.


EVAPORATOR

Falling film evaporator is utilized in the chiller. Theoretical heat transfer coefficient of falling film evaporation outside evaporator tubes is 30% higher than that of pool boiling of a flooded type evaporator. Liquid refrigerant can be distributed more evenly and forms a film outside the tubes to ensure better heat transfer. Falling film evaporator has relatively lower internal liquid level and is less influenced by hydrostatic column. Lubrication oil is concentrated together which enables easier compressor oil return.



Optional flooded evaporator features high heat exchange efficiency and reliable operation after continuous product improvement.

Advanced Refrigerant Control

EVDEVO driver and super capacitor module are integrated in pCO5+ without the need of solenoid valve. EXV is used to fast and precisely meter refrigerant flow to keep a stable evaporator leaving water temperature.

Intelligent Control System Duty /Standby Units & CloudWatch Charge

MODEL NUMBER DESIGNATION

MVS	W	075	E	А	R
1	2	3	4	5	6

- 1: Variable Speed Drive on Screw compressor
- 2: Cooling type:
 - A: Air cooled W: Water cooled
- 3: Model Number

- 4: Refrigerant E: R134a
- **5: Electrical Specifications** A: 400V ± 10% / 50Hz / 3 Phase B: 380V / 60Hz / 3 Phase C: 440-460V / 60Hz / 3 Phase
- 6: Blank for Standard R: Heat Recovery (Optional)

CAREL Control

Multistack **MVSW** series Water Cooled VSD screw chillers use MS One control system. The control core is a programmable pCO⁵+ logic controller dedicated for HVAC products. The patent chip of pCO⁵+ takes advantage of ASIC technology to ensure flexibility of the control system. LCD touch screen provides operators, factory technicians and service personnel with current operation data of the chiller, faults, load history, start/stop history, etc.

TEMPERATURE CONTROL

MS One Control System compares the entering and leaving water temperature with its setpoint value to compute the capacity required and determine the compressor load. The inverter will adjust cooling capacity of the chiller based on the previous calculated value and keep the water temperature within set point.

COMPRESSOR BALANCE AND START / STOP RESTRICTION

MS One accumulates running hours of each compressor and hence establishes a working sequence to well balance the running hours of the two compressors of the chiller. Minimum non-running hours, minimum running hours, restart times limit and other settings allow the control of start and stop frequency of the compressor, which can improve its life span.

FAILSAFE

Control system can monitor the following faults. In the event of a compressor fault, the controller will close the faulty compressor. In the case of a system fault, the controller will close all compressors of the chiller bank.

Compressor Faults: High discharge pressure, low suction pressure, discharge temperature fault, compressor overload, inverter fault, motor faults, etc.

System Faults: Low chilled water flow, low condenser water flow, low leaving chilled water temperature, high leaving condenser water temperature, system pressure Fault, external interlock fault/protection, pump fault, cooling tower fault, etc.

REMOTE COMMUNICATION

MS One Control System is fitted with Ethernet, RS485, RS232 and USB ports to realize remote communication and integrated controls via connection between the Building Automation System (BAS) or Distributed Control System (DCS) and various protocols. These protocols can also work with DDC and other different types of controllers to build a control network.

PASSWORD

MS One has three levels of security access – User, Service and Factory. The three-level security accesses ensure that only authorized personnel can modify chiller control and protection settings to avoid any unwanted change that may result in chiller failure by an unauthorized person.

Physical Data R134a

	Model MVSW	075	090	110	125				
Nomi	nal Cooling Capacity (kW)	264.1	312.0	360.9	436.6				
Power	r Input (kW)	52.6	60.2	69.2	83.6				
COP (w/w)	5.02	5.18	5.22	5.22				
IPLV (w/w)	8.96	9.23	9.28	9.32				
Full Lo	bad Amps	132							
Contro	ol System		MS One Co	ontroller					
Contr	ol Stages (%)		30 - 1	L00					
r	Туре		VSD So	crew					
Compressor	Number		1						
Idua	R.L.A. (A)	89	103	119	143				
ပိ	F.L.A. (A)	150	150	150	176				
	Туре		Falling Film E	Evaporator					
Evaporator	Water Flow Rate (m ³ /h)	45.4	53.7	62.4	75.1				
	Water Pressure Drop (kPa)	55.1	49.1	48.8	49.4				
por	Fouling Factor (m ² k/kW)	0.018							
Eval	Max. Working Pressure (Water Side) (kPa)		100	0					
	Pipe Size	4″	4″	4″	5″				
	Туре		Shell & Tube He	eat Exchanger					
	Water Flow Rate (m ³ /h)	54.5	64.0	74.0	89.5				
Iser	Water Pressure Drop (kPa)	43.2	43.9	46.5	47.7				
der	Fouling Factor (m ² k/kW)		0.04	14					
Condenser	Max. Working Pressure (Water Side) (kPa)		100	0					
	Pipe Size	4"	4"	5″	5″				
Refrig	erant charge (kg)	66	78	90	109				
Shipp	ing weight (kg)	2600	2700	2800	2850				
Opera	ition weight (kg)	2750	2850	3000	3050				
Dimer	nsion: L x W x H (mm)	3300 x 1250 x 1750	3300 x 1300 x 1800	3300 x 13	50 x 1850				

Nominal Values base on:

Ambient	35°C
Chilled Water Entering Temp.	12°C
Chilled Water Entering Temp.	7°C

Physical Data R134a (cont'd)

	Model MVSW	140	170	190	210	230				
Nomi	nal Cooling Capacity (kW)	497.6	586.7	658.5	734.2	814.7				
Power	r Input (kW)	94.3	110.0	122.6	136.6	145.5				
COP (<i>N</i> /W)	5.28	5.33	5.37	5.37	5.60				
IPLV (IPLV (w/w) 9.42 9.53 9.66 9.94 9.									
Full Lo	oad Amps	237	277	309	349	420				
Contr	ol System			MS One Control	ler					
Contr	ol Stages (%)			30 - 100						
or	Туре			VSD Screw						
Compressor	Number		1		2	1				
dua	R.L.A. (A)	158	188	210	117	246				
ŭ	F.L.A. (A)	210	260	260	150	360				
	Туре		F	alling Film Evapoi	ator					
Evaporator	Water Flow Rate (m ³ /h)	85.6	100.9	113.2	126.3	140.1				
	Water Pressure Drop (kPa)	52.0	48.8	91.8	52.2					
DOC	Fouling Factor (m ² k/kW)	0.018								
Eval	Max. Working Pressure (Water Side) (kPa)			1000						
	Pipe Size	5″	5″ 6″							
	Туре		She	I & Tube Heat Exc	changer					
	Water Flow Rate (m ³ /h)	101.8	119.5	134.3	149.8	165.1				
Isel	Water Pressure Drop (kPa)	47.2	49.9	51.0	88.5	50.7				
der	Fouling Factor (m ² k/kW)			0.044						
Condenser	Max. Working Pressure (Water Side) (kPa)			1000						
	Pipe Size	5″		6"		8″				
Refrig	erant charge (kg)	124	146	164	184	204				
Shipp	ing weight (kg)	3100	3500	3700	4200	4100				
Opera	tion weight (kg)	3300	3750	3950	4400	4300				
Dimer	nsion: L x W x H (mm)	3300 x 1350 x 1850	3300 x 14	00 x 1900	4200 x 1450 x 1900	3300 x 1450 x 1950				

Nominal Values base on:

Ambient	35°C
Chilled Water Entering Temp.	12°C
Chilled Water Entering Temp.	7°C

Physical Data R134a (cont'd)

	Model MVSW	250	290	350	390	480						
Nomi	nal Cooling Capacity (kW)	888.0	1012.2	1213.2	1361.8	1684.8						
Powe	r Input (kW)	164.8	186.0	214.0	238.6	283.4						
COP (w/w)	5.39	5.44	5.67	5.71	5.94						
IPLV (w/w)	9.99	10.10	10.19	10.28	10.32						
Full Lo	bad Amps	421	475	554	618	840						
Contr	ol System			MS One Controller								
Contr	ol Stages (%)			30 - 100								
ъ	Туре			VSD Screw								
Compressor	Number			2								
duuc	R.L.A. (A)	138	160	186	206	243						
ŏ	F.L.A. (A)	176	210	260 alling Film Evaporato	260	360						
	Туре											
Evaporator	Water Flow Rate (m ³ /h)	152.7	289.7									
	Water Pressure Drop (kPa)	89.5	88.7									
por	Fouling Factor (m ² k/kW)		0.018									
Eva	Max. Working Pressure (Water Side) (kPa)			1000								
	Pipe Size	6″		8″		10"						
	Туре		Shell	& Tube Heat Excha	nger							
	Water Flow Rate (m ³ /h)	181.0	206.1	245.4	275.2	338.5						
Iser	Water Pressure Drop (kPa)	88.7	89.3	91.8	88.9	88.2						
der	Fouling Factor (m ² k/kW)			0.044								
Condenser	Max. Working Pressure (Water Side) (kPa)			1000								
	Pipe Size		8)		10"						
Refrig	erant charge (kg)	222	253	303	340	421						
Shipp	ing weight (kg)	4800	5300	6200	6800	7500						
Opera	ition weight (kg)	5100	5700	6700	7300	8000						
Dimer	nsion: L x W x H (mm)	4400 x 1500 x 1950		4200 x 1550 x 2050		4200 x 1600 x 2100						

Nominal Values base on:

Ambient	35°C
Chilled Water Entering Temp.	12°C
Chilled Water Entering Temp.	7°C

Unit Performance

MVSW075

Condenserviteter	Leaving Chilled Water Temperature (°C)										
Condenser Water Leaving Temp. °C	5		7		9		11		13		
	САР	PI	САР	PI	САР	PI	САР	PI	САР	PI	
15	274.7	30.5	295.8	29.5	319.6	27.9	343.3	26.3	369.7	24.7	
20	266.7	38.9	287.9	37.9	309.0	36.8	332.8	35.8	359.2	34.7	
25	256.2	45.8	277.3	45.8	298.4	45.2	322.2	44.7	346.0	43.7	
30	243.0	52.6	264.1	52.6	285.2	52.6	309.0	52.1	332.8	52.1	
35	229.8	59.4	250.9	59.4	269.4	59.4	293.2	60.0	314.3	60.0	

MVSW090

Condensor Water	Leaving Chilled Water Temperature (°C)										
Condenser Water Leaving Temp. °C	5		7		9		11		13		
	САР	PI	САР	PI	САР	PI	САР	PI	САР	PI	
15	324.5	34.9	349.4	33.7	377.5	31.9	405.6	30.1	436.8	28.3	
20	315.1	44.5	340.1	43.3	365.0	42.1	393.1	40.9	424.3	39.7	
25	302.6	52.4	327.6	52.4	352.6	51.8	380.6	51.2	408.7	50.0	
30	287.0	60.2	312.0	60.2	337.0	60.2	365.0	59.6	393.1	59.6	
35	271.4	68.0	296.4	68.0	318.2	68.0	346.3	68.6	371.3	68.6	

MVSW110

Constant and Matter		Leaving Chilled Water Temperature (°C)									
Condenser Water Leaving Temp. °C	ŗ,	5	7	7		9		1	13		
	САР	PI	САР	PI	САР	PI	САР	PI	САР	PI	
15	375.3	40.1	404.2	38.8	436.7	36.7	469.2	34.6	505.3	32.5	
20	364.5	51.2	393.4	49.8	422.3	48.4	454.7	47.1	490.8	45.7	
25	350.1	60.2	378.9	60.2	407.8	59.5	440.3	58.8	472.8	57.4	
30	332.0	69.2	360.9	69.2	389.8	69.2	422.3	68.5	454.7	68.5	
35	314.0	78.2	342.9	78.2	368.1	78.2	400.6	78.9	429.5	78.9	

MVSW125

Condenservitieten	Leaving Chilled Water Temperature (°C)										
Condenser Water Leaving Temp. °C	5	5	7		9		11		13		
Leaving remp. C	САР	PI	САР	PI	САР	PI	САР	PI	САР	PI	
15	454.1	48.5	489.0	46.8	528.3	44.3	567.6	41.8	611.2	39.3	
20	441.0	61.9	475.9	60.2	510.8	58.5	550.1	56.8	593.8	55.2	
25	423.5	72.7	458.4	72.7	493.4	71.9	532.7	71.1	571.9	69.4	
30	401.7	83.6	436.6	83.6	471.5	83.6	510.8	82.8	550.1	82.8	
35	379.8	94.5	414.8	94.5	445.3	94.5	484.6	95.3	519.6	95.3	

CAP Cooling Capacity (kW)

ΡI

Compressor Power input (kW)

Unit Performance (cont'd)

MVSW140

		Leaving Chilled Water Temperature (°C)											
Condenser Water Leaving Temp. °C	Ę	5		7	9		1	.1	13				
Leaving remp. C	САР	PI	САР	PI	САР	PI	САР	PI	САР	PI			
15	517.5	54.7	557.3	52.8	602.1	50.0	646.9	47.2	696.6	44.3			
20	502.6	69.8	542.4	67.9	582.2	66.0	627.0	64.1	676.7	62.2			
25	482.7	82.0	522.5	82.0	562.3	81.1	607.1	80.2	651.9	78.3			
30	457.8	94.3	497.6	94.3	537.4	94.3	582.2	93.4	627.0	93.4			
35	432.9	106.6	472.7	106.6	507.6	106.6	552.3	107.5	592.1	107.5			

MVSW170

				Le	aving Chille	ed Water T	emperatur	e (°C)		
Condenser Water Leaving Temp. °C	5		-	7		Ð	1	1	13	
	САР	PI	САР	PI	САР	PI	САР	PI	САР	PI
15	610.2	63.8	657.1	61.6	709.9	58.3	762.7	55.0	821.4	51.7
20	592.6	81.4	639.5	79.2	686.4	77.0	739.2	74.8	797.9	72.6
25	569.1	95.7	616.0	95.7	663.0	94.6	715.8	93.5	768.6	91.3
30	539.8	110.0	586.7	110.0	633.6	110.0	686.4	108.9	739.2	108.9
35	510.4	124.3	557.4	124.3	598.4	124.3	651.2	125.4	698.2	125.4

MVSW190

Condonsor Water				Le	aving Chille	ed Water Te	mperature	(°C)		
Condenser Water Leaving Temp. °C	5			7		9		1	13	
Leaving reinp. C	САР	PI	САР	PI	САР	PI	САР	PI	САР	PI
15	684.8	71.1	737.5	68.7	796.8	65.0	856.1	61.3	921.9	57.6
20	665.1	90.7	717.8	88.3	770.4	85.8	829.7	83.4	895.6	80.9
25	638.7	106.7	691.4	106.7	744.1	105.4	803.4	104.2	862.6	101.8
30	605.8	122.6	658.5	122.6	711.2	122.6	770.4	121.4	829.7	121.4
35	572.9	138.5	625.6	138.5	671.7	138.5	730.9	139.8	783.6	139.8

MVSW210

CondoncorWator				Leavi	ng Chilled	Water Ten	nperature ((°C)		
Condenser Water Leaving Temp. °C	5			7		9		1	13	
Leaving remp. C	САР	PI	САР	PI	САР	PI	САР	PI	САР	PI
15	763.6	79.2	822.3	76.5	888.4	72.4	954.5	68.3	1027.9	64.2
20	741.5	101.1	800.3	98.4	859.0	95.6	925.1	92.9	998.5	90.2
25	712.2	118.8	770.9	118.8	829.6	117.5	895.7	116.1	961.8	113.4
30	675.5	136.6	734.2	136.6	792.9	136.6	859.0	135.2	925.1	135.2
35	638.8	154.4	697.5	154.4	748.9	154.4	815.0	155.7	873.7	155.7

CAP Cooling Capacity (kW)

PI

Compressor Power input (kW)

Unit Performance (cont'd)

MVSW230

Condensor Water				Le	aving Chille	ed Water T	emperature	e (°C)		
Condenser Water Leaving Temp. °C	5		7		9		1	1	13	
Leaving remp. C	САР	PI	САР	PI	САР	PI	САР	PI	САР	PI
15	847.3	84.4	912.5	81.5	985.8	77.1	1059.1	72.8	1140.6	68.4
20	822.8	107.7	888.0	104.8	953.2	101.9	1026.5	98.9	1108.0	96.0
25	790.3	126.6	855.4	126.6	920.6	125.1	993.9	123.7	1067.3	120.8
30	749.5	145.5	814.7	145.5	879.9	145.5	953.2	144.0	1026.5	144.0
35	708.8	164.4	774.0	164.4	831.0	164.4	904.3	165.9	969.5	165.9

MVSW250

Condoncor Motor				Le	aving Chille	ed Water 1	emperatur	e (°C)		
Condenser Water Leaving Temp. °C	5		7		g	Ð	1	1	13	
Leaving remp. C	САР	PI	САР	PI	САР	PI	САР	PI	САР	PI
15	923.5	95.6	994.6	92.3	1074.5	87.3	1154.4	82.4	1243.2	77.5
20	896.9	122.0	967.9	118.7	1039.0	115.4	1118.9	112.1	1207.7	108.8
25	861.4	143.4	932.4	143.4	1003.4	141.7	1083.4	140.1	1163.3	136.8
30	817.0	164.8	888.0	164.8	959.0	164.8	1039.0	163.2	1118.9	163.2
35	772.6	186.2	843.6	186.2	905.8	186.2	985.7	187.9	1056.7	187.9

MVSW290

Condonsor Mator				Le	aving Chille	ed Water 1	emperatur	e (°C)		
Condenser Water Leaving Temp. °C	5		7	7		Ð	1	1	13	5
Leaving remp. C	САР	PI	САР	PI	САР	PI	САР	PI	САР	PI
15	1052.7	107.9	1133.7	104.2	1224.8	98.6	1315.9	93.0	1417.1	87.4
20	1022.3	137.6	1103.3	133.9	1184.3	130.2	1275.4	126.5	1376.6	122.8
25	981.8	161.8	1062.8	161.8	1143.8	160.0	1234.9	158.1	1326.0	154.4
30	931.2	186.0	1012.2	186.0	1093.2	186.0	1184.3	184.1	1275.4	184.1
35	880.6	210.2	961.6	210.2	1032.4	210.2	1123.5	212.0	1204.5	212.0

MVSW350

Condensor Water		Leaving Chilled Water Temperature (°C)											
Condenser Water Leaving Temp. °C	5		7	7		9		1	13				
Leaving remp. C	САР	PI	САР	PI	САР	PI	САР	PI	САР	PI			
15	1261.7	124.1	1358.8	119.8	1468.0	113.4	1577.2	107.0	1698.5	100.6			
20	1225.3	158.4	1322.4	154.1	1419.4	149.8	1528.6	145.5	1650.0	141.2			
25	1176.8	186.2	1273.9	186.2	1370.9	184.0	1480.1	181.9	1589.3	177.6			
30	1116.1	214.0	1213.2	214.0	1310.3	214.0	1419.4	211.9	1528.6	211.9			
35	1055.5	241.8	1152.5	241.8	1237.5	241.8	1346.7	244.0	1443.7	244.0			

CAP Cooling Capacity (kW)

PI

Compressor Power input (kW)

Unit Performance (cont'd)

Leaving Chilled Water Temperature (°C) **Condenser Water** 5 7 13 9 11 Leaving Temp. °C CAP ΡI ΡI CAP ΡI CAP CAP Ы CAP ΡI 15 1416.3 138.4 1525.2 133.6 1647.8 126.5 1770.3 119.3 1906.5 112.1 20 1715.9 1375.4 176.6 1484.4 171.8 1593.3 167.0 162.2 1852.0 157.5 25 207.6 1320.9 205.2 1429.9 207.6 1538.8 1661.4 202.8 1784.0 198.0 30 1252.9 1470.7 238.6 1593.3 238.6 1361.8 238.6 236.2 1715.9 236.2 35 1184.8 269.6 1293.7 269.6 1389.0 269.6 1511.6 272.0 1620.5 272.0

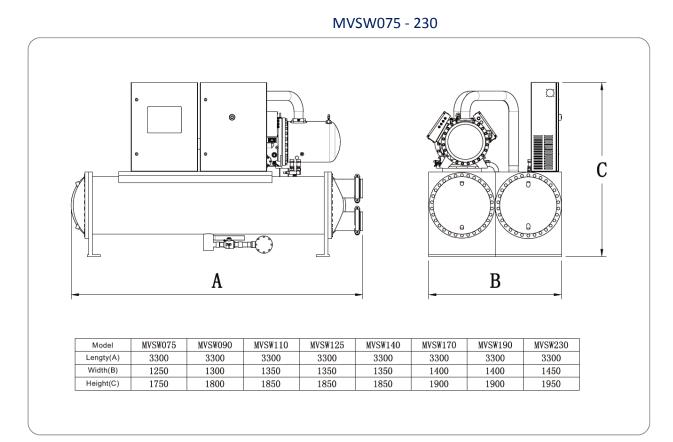
MVSW390

MVSW480

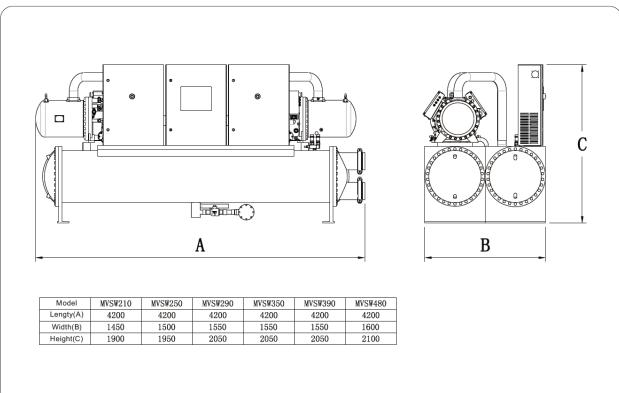
Condenser Water		Leaving Chilled Water Temperature (°C)											
Leaving Temp. °C	5		7		9		11		13				
Leaving remp. C	САР	PI	САР	PI	САР	PI	САР	PI	САР	PI			
15	1752.2	164.4	1887.0	158.7	2038.6	150.2	2190.2	141.7	2358.7	133.2			
20	1701.6	209.7	1836.4	204.0	1971.2	198.4	2122.8	192.7	2291.3	187.0			
25	1634.3	246.6	1769.0	246.6	1903.8	243.7	2055.5	240.9	2207.1	235.2			
30	1550.0	283.4	1684.8	283.4	1819.6	283.4	1971.2	280.6	2122.8	280.6			
35	1465.8	320.2	1600.6	320.2	1718.5	320.2	1870.1	323.1	2004.9	323.1			

CAP Cooling Capacity (kW)

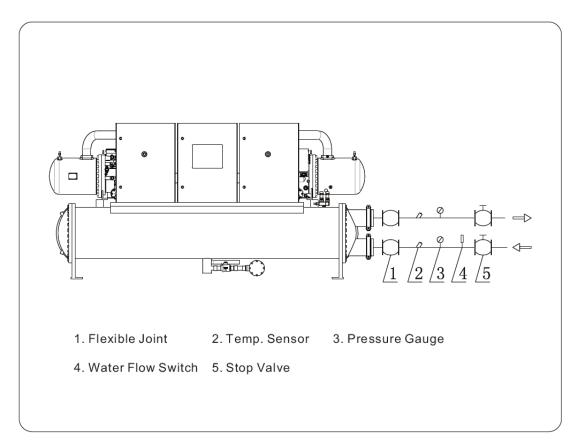
Compressor Power input (kW)

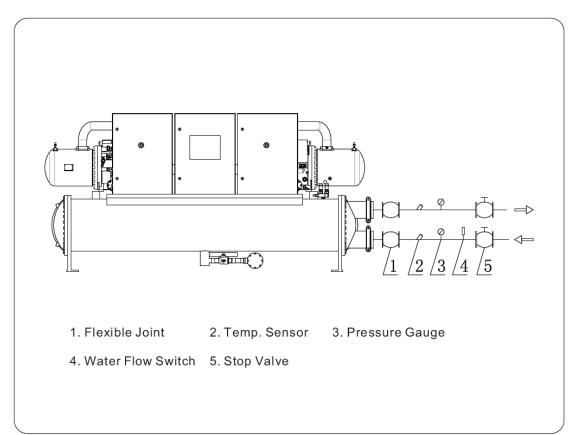

Notes:

- Table is based on a 5°C difference in water temperature.
- Please contact your local Multistack Agent if you require performance data beyond the limits of the above table.

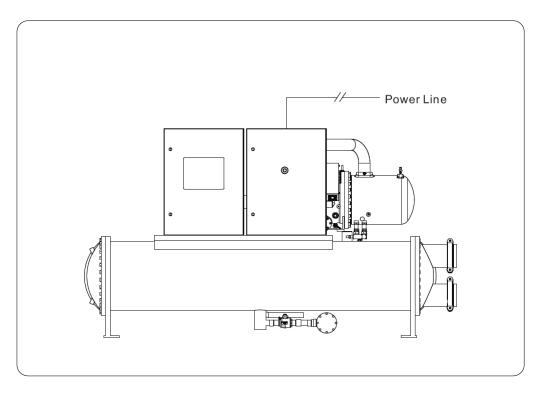

Ы

- For low temperature applications (≤5°C) contact Multistack Ltd
- Interpolation is permissible. Do not extrapolate.


Physical Dimensions


MVSW210 - 480

1. Condenser Water Piping



2. Chilled Water Piping

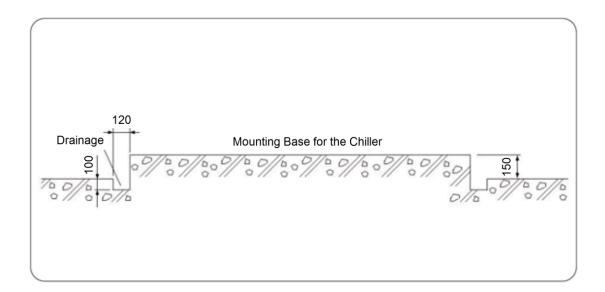
1. Single-compressor Unit

Remove the power mains inlet cover on the top of the electrical box. Power line should be run through the cable entry into the electrical box and connected to the main air circuit breaker.



2. Double-compressors Unit

Remove the power mains inlet cover on the top of the electrical box. Power lines should be separately run through the cable entries into the electrical box and respectively connected to the main air circuit breaker of each compressor.



FIELD WIRING DIAGRAM

Technical Notes:

- 1. Minimum cross section of control wires should be 1mm²;
- 2. All input terminals have been factory-bridged, which require removal of jumper blocks before use;
- 3. All input terminals are volt-free contacts;
- 4. Maximum current allowable for volt-free output contact is 5A (Resistive);
- 5. "—" for factory wiring and "--" for field wiring.

MULTISTACK INTERNATIONAL LIMITED 17 FRIARS ROAD, MOORABBIN, VICTORIA 3189, AUSTRALIA TELEPHONE: +61 3 8586 8200 FACSIMILE: +61 3 8586 8202 Email: <u>sales@multistack.com.au</u> Web site: <u>http://www.multistack.com.au</u>

Since MULTISTACK INTERNATIONAL LIMITED has a policy of continuous product improvement, it reserves the right to change design and specification without notice. Multistack supplied by Multistack Australia Pty Ltd (a wholly owned subsidiary of Multistack International Limited) 01/2019 Rev. 1.0